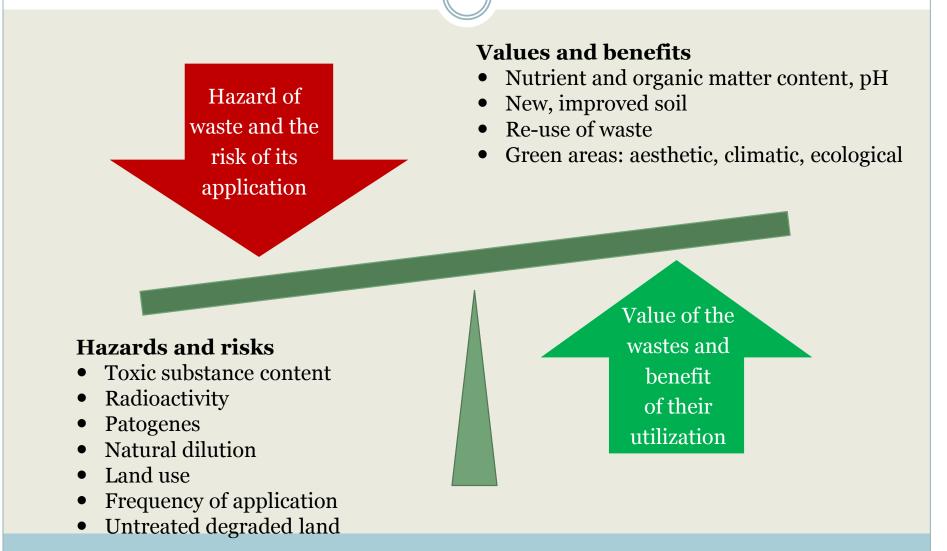
Improvement of degraded soil by wastes and waste derived products – case studies


<u>VIKTÓRIA FEIGL*</u>, ORSOLYA KLEBERCZ*, ÉVA UJACZKI*, EMESE VASZITA*, MÓNIKA MOLNÁR*, NIKOLETT UZINGER**, KATALIN GRUIZ*

WITH THE CONTRIBUTION OF THE "SOILUTIL", THE "BÁNYAREM" AND THE "TERRA PRETA" PROJECT CONSORTIA

*Budapest University of Technology and Economics, Faculty of Chemical Engineering and Bioengineering, Department of Applied Biotechnology and Food Science

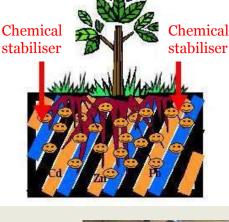
**Hungarian Academy of Sciences, Institute for Soil Sciences and Agricultural Chemistry, Centre for Agricultural Research

Evaluation of wastes and their application for soil based on their risks and benefits

Case studies: wastes for soil improvement

- **No. 1.** Remediation of mine waste with fly ash and other amendments
- No. 2. Remediation of metal contaminated soil with fly ash
- **No. 3.** Revegetation and rehabilitation: creation of a fertile topsoil layer from fly ash and organic wastes
- No. 4. Soil substitute from red mud
- No. 5. Acidic sandy soil improvement with biochar

Case study No 1.

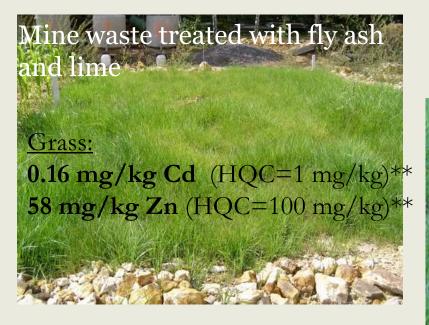

- Site: Gyöngyösoroszi mining site
- **Problem:** acidic (pH=2.8), Cd, Zn, Pb and As containing mine waste on the surface for 40 years
- **Solution:** combined chemical and phytostabilisation
- **Amendments:** <u>fly ash</u>, lime, iron grit

Plants:

grass mixture, broom corn, sudan grass

chemical and pytostabilisation

Field experiment



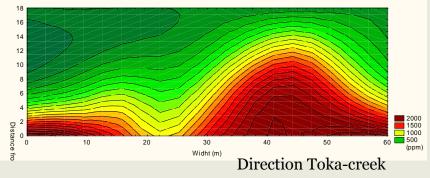
Effect of chemical stabilisation

Leachate:

Cd: 441 µg/l (HQC: 5 µg/l)* \rightarrow **0.12 µg/l Zn:** 89 079 µg/l (HQC: 200 µg/l)* \rightarrow **29.3 µg/l** (Untreated mine waste, 2007 \rightarrow Fly ash+lime+iron, 2009)

* B contamination level for underground water, 6/2009 (IV. 14.)
KvVM-EüM-FVM joint decree
** Hungarian quality criteria for food and fodder, 44/2003.
(IV.26.) FVM and 17/1999. (VI. 16.) EüM decree

Case study No 2.


- **Site:** Gyöngyösoroszi mining site
- **Problem:** agricultural soil contaminated with Cd and Zn by flooding
- **Solution:** combined chemical and phytostabilisation
- Amendment: <u>fly ash</u>
- **Plant:** grass mixture, broom corn, sudan grass, maize

Flooding in Gyöngyösoroszi

Mine waste in the Toka-creek

³D Contour Plot (distribution of the zinc in the hobby garden)

Sudan grass on untreated (left) and fly ash treated (right) soil

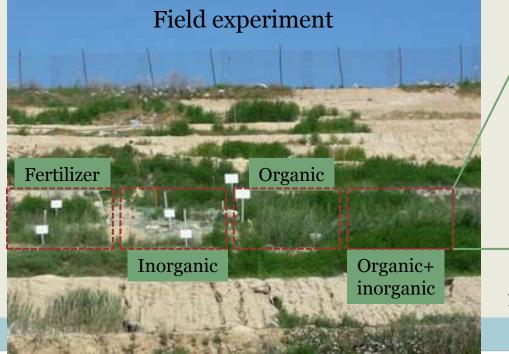
Cd: 3.00 mg/kg Zn: 348 mg/kg Cd: **0.902** mg/kg Zn: **104** mg/kg

Case study No. 3.

- **Site:** .A.S.A. Hungary Ltd. municipal landfill site at Gyál
- **Problem:** steep ringwall with no vegetation bad aesthetic view, erosion
- **Solution:** *in situ* waste mixing
- Amendment:

<u>fly ash; wood ash; raw,</u> <u>digested and composted</u> <u>sewage sludge</u>

• **Plant:** grass mixture



Barren ringwall of the municipal landfill

Long term effect of waste treatment (2.5 years)

- One-time treatment, but improvement from year to year
- Improvement in texture, nutrient-availability, biological activity
- No toxic effect
- Best option: organic+inorganic amendment together

Grass on the organic + inorganic waste amended plot

Case study No. 4.

Experimental plots

- **Site:** .A.S.A. Hungary Ltd. municipal landfill site at Gyál
- **Problem:** cheap and fertile cover material needed
- **Solution:** soil substitute from waste
- Wastes:
 - <u>subsoil (construction waste)</u>
 - o <u>red mud (Ajka)</u>
 - <u>red mud contaminated soil</u> (removed after Ajka accident)
 - o <u>compost, green waste, saw dust</u>
- Plant: grass mixture

Plants grown on the waste mixtures

Best combinations:

subsoil + 2% Ajka red mud
+ 10% green waste or compost
subsoil + 20% red mud contaminated soil

Soil substitute with ideal water balance, available nutrient and organic matter content, active microflora, no toxic effect

Case study No. 5.

- **Site:** Nyírlúgos, agricultural land
- **Problem:** acidic (pH=4.5) sandy (85 w/w% sand) soil
- **Solution:** biochar amendment
- Biochar from waste:
 - Grain husks
 - Paper fibre sludge
 - Pyrolysis: 500 °C, 20 min
- Plant: maize

Biochar

Experimental field plots

Maize in pot experiments

Best options:

1% biochar
0.5% biochar + microbial soil inoculant

Improved plant growth & productivity, higher pH, available K and P, water holding capacity, more active microflora & soil as habitat

Wastes are solution for degraded land!

Thank you for your attention!

E-mail: vfeigl@mail.bme.hu, mmolnar@mail.bme.hu

More info: <u>www.enfo.hu</u>

The experiments were carried out in the frame of the BÁNYAREM (GVOP 3.1.1-2004-05-0261/3.0), the MOKKA (NKFP-020-05) and the SOILUTIL (TECH_09-A4-2009-0129) Hungarian R&D projects, the TERRA PRETA (HU09-0029-A1-2013) Norway Grants project