

Investigation of soil structure and modelling the water and heat cycle of soil

Csilla Farkas Kick-off meeting of the Terra Preta EEA project 1-2 September, 2014. Budapest

Presentation outline

- Soil structure and methods of its characterisation
- From natural curiosity to data-model fusion methods for studying complex systems and their responses to changes in drivers
- Aims of mathematical modelling in the Terra Preta project
- Input and reference data requirement
- Case studies
- Conclusions

Soil structure

"arrangement and organization of primary and secondary particles in a soil mass" "the spatial heterogeneity of different components or properties of soil"

- the bonding of the soil particles into structural unit is the genesis of soil structure.
- controls the amount of water and air in the soil
- influences soil fertility, plant development and soil-related ecosystem services

Factors influencing structural development of arable soils

- Climate
- Organic matter
- Tillage
- Plants, roots, residues
- Animals
- Microbes

- Fertilisers
- Wetting and drying
- Exchangeable cations
- Inorganic cements
- Clay
- Water

Characterisation of soil structure: indirect methods

- Size and stability of particles and aggregates
- Water-stable aggregates
- Microaggregates
- Characterisation of the pore space
 - Measuring total porosity
 - Determining the water retention curve (pore-size distribution)

Characterisation of soil structure: direct methods

Micromorphological method (microscopic study of soil sections)

Characterisation of soil structure: direct methods

Computer-Assisted Tomography (CT-scans)

Mathematical modelling

• Natural curiosity \rightarrow observations \rightarrow information

Measurements

spatio-temporal data base

- Natural curiosity → observations → information
- Measurements → monitoring → data bases
- Statistical analyses

empirical models

Physical laws/relationships

➔ process-based models

Finer spatio-temporal resolution of the models

(improving requirements and computing capacity)

Data-model fusion is an advanced approach for studying

complex systems

Models in the spatio-temporal space

Model application

- 1. Problem definition, preliminary information
- 2. Model selection ("good modelling practice" principles; Benchmark criteria)
- 3. Model parameterisation using data-model fusion
 - Available data from the study site
 - Literature review
 - Expert assumptions (qualitative information)
 - Measurements and monitoring
- 3. Calibration procedure
 - Minimising the difference between the reference observed and modelled values
 - Stepwise calibration approach (soil temp soil water content CO2)
- 4. Validation procedure
- 5. Scenario analyses
 - Management scenarios
 - Climate change scenarios
 - Biochar application

Model data requirement

- 1. Driving variables (meteorological data)
- 2. Initial and bounary conditions
- 3. Crop properties (LAI, rooting depth, crop height, crop cover factor etc.)
- 4. Soil properties (soil water retention curve and hydraulic conductivity function)
- 5. Site-specific properties
- 6. Reference data (measured soil temperature, water content and CO2 emission)

Soil structural changes – through measured water retention curves before and after biochar application.

Effect of soil consolidation on soil water retention and soil water regime

Impact of climate and land use changes on soil water balance elements

Climate: RCA scenario (temperature: +2.4 °C, precip. + 280 mm **Land use 1**.: arable to grass, grass to forest, forest remains forest

70

20 Nater 0

70

€0 €0 50

t 40

5 30

b 20

š 10

Thank you for the attention!

